Sensitivity Analysis in SUNDIALS:

Current and Coming Attractions

Radu Serban

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

CASC”
—

Eighth DOE ACTS Collection Workshop
August 22, 2007

Outline

SUNDIALS: overview

Sensitivity Analysis
m Overview: what? why? how?
m Forward sensitivity analysis
m Adjoint sensitivity analysis
m Higher-order sensitivities

Implementation considerations
m Efficiency issues
m (Non-)commutativity issues

CVODES and IDAS
m Features
m Usage
m Examples

Final remarks

SUNDIALS
@00

Development timeline

1972 1974 1976 1976 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004
,) | L n |) today next

\ "

gear odepack)—1—»(vode }»(vodpk)—(cvode)-——— 5

[(pvode cvode)

L(senspvode)—(cvodes)

dassl »(daspk) (ida)—+—{(ida E
Lsensiday———{idas) |

nksol } @ins@ I " =kinsoD

| I —(senskinsol) :

FORTRAN | ANSI C

Solution of large systems in parallel motivated writing (or rewriting) solvers in C
cvoDE C rewrite of vODE/VODPK [Cohen,Hindmarsh, 1994]

PVODE parallel extension of cvoDE [Byrne,Hindmarsh, 1998]

KINSOL C rewrite of NKsoOL [Taylor,Hindmarsh, 1998]

IDA C rewrite of DASPK [Hindmarsh, Taylor, 1999]
Codes organized as a suite (SUNDIALS) in 2002
[Hindmarsh,Brown,Grant,Lee,S.,Shumaker,Woodward, 2005]
Sensitivity capable solvers in SUNDIALS
CVODES [S.,Hindmarsh, 2002]
IDAS [S., 2007]

SUNDIALS
oeo

The SUNDIALS solvers

CVODE - ODE solver
m Variable-order, variable-step BDF (stiff) or implicit Adams (nonstiff)
m Nonlinear systems solved by Newton or functional iteration
m Linear systems solved by direct (dense or band) or iterative solvers
IDA - DAE solver
m Variable-order, variable-step BDF
m Nonlinear system solved by Newton iteration
m Linear systems solved by direct or iterative solvers
KINSOL - nonlinear solver
m Inexact Newton solver (GMRES, BiCG-Stab, or TFQMR iterative linear solvers)
m (Modified) Newton solver (dense or band direct linar solvers)
CVODES
m Sensitivity-capable (forward & adjoint) version of CVODE
IDAS
m Sensitivity-capable (forward & adjoint) version of IDA

SUNDIALS
ooe

Salient features of the SUNDIALS solvers

m Philosophy: Keep codes simple to use

m Writtenin C

m Fortran interfaces: FCVODE, FIDA, and FKINSOL
m Matlab interfaces: SUNDIALSTB (CVODES, IDAS, and KINSOL)

m Written in a data structure neutral manner
m No specific assumptions about data
m Alternative data representations and operations can be provided

m Modular implementation: vector modules, linear solver modules,
preconditioner modules
m Require minimal problem information, but offer user control over
most parameters
m Sensitivity Analysis
m Philosophy: Require minimal changes to enable SA
m Provide both FSA and ASA support

Sensitivity Analysis
@000

What is SA?

Definition

Broadly speaking, sensitivity analysis (SA) is the study of how the variation in the
output of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation.

Local sensitivity analysis (dynamical systems)

F(y,y,p) =0
g(p) = a(y(p),p)

wherey e R"and g : R" x RN — R.
Considering the Taylor expansion of g around the nominal value p

g(p +6p) = 9(p) + d—gép +(6p)" pg sp + O(||sp|I°)
we define
m 15 order SA problem:
find the gradient g—g =0yYp + Op
m 2" order SA problem
find the Hessian ‘f,' 9 = (In, ® Gy)Ypp + GgyYp + Vg Gyp + Yg GyyYp + Gpp

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000

m_CAsc

m Model evaluation
Finding most and least influential parameters

m Model reduction
Reducing model complexity, while preserving its input-output
behavior

m Data assimilation
Merging observed information into a model in order to improve its
accuracy

m Uncertainty quantification
Characterizing (quantitatively) and reducing uncertainty in model
predictions

m Dynamically-constrained optimization
Improving model response (better performance, better
agreement with observations, etc.)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000

ULgAsc

Parameter-dependent ODE system

Model: F(y,y,p) =0
Output functional: g(p) = g(y(p),p)

Finite-difference sensitivity analysis

99 1) ~ 9P+ €0p) —9(p)
dp; op;
or

99 1) ~ 9P+ i) —9(p — eiopi)
dp; 20p;

where g; is the i-th column of the identity matrix and ép is a vector of perturbations.

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000

How to perform SA? (2) (g

Parameter-dependent ODE system

Model: F(y,y,p) =0
Output functional: g(p) = g(y(p),p)

Forward sensitivity analysis Adjoint sensitivity analysis

FySi + Fysi+Fp =0 —(ATFy) + ATFy +h(g) =0
and and
dg/dp = gySi + gp, (Fp, A) — Vpg(p)
Cost ~ (1 + Np) x cost(sim) Cost ~ (1 + Ng) x cost(sim)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000)(000

FSA for ODE and DAE systems (=55

m Parameter dependent system: F(y,y,p) =0, y(to) = Yo(p)
m Output functional: g(y, p)
m Sensitivity systems: (i =1,2,...,Np)
I:ySI + FySi + Fpi = 09 Si (tO) - yOpi
m Gradient of output functional:

dg
% — gyS +gp

where S = [sy, Sy, ..., Sy,] is the sensitivity matrix.

m Sensitivity equations depend on p but not on g.

m A linear combination Su of all sensitivity vectors can be
computed with ~ twice the cost of computing y.

UNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
O 000008000000 00000 0000000 000

ASA for ODE and DAE systems (1) (=5

Model: F(y,y,p) =0, y(to)=Yyo(p)

Output functional: G(p) = ftg g(y,p)dt
Gradient: = Jif (9o = ATFp) dt — (ATFyyp)[!
Adjoint system: (ATFy) —ATFy = —gy, () =

Consistent final conditions [Cao,Li,Petzold,S., 2003]

index-0 and index-1 DAE
F(y,y)=0= (ATFy) —ATFy = —gy

Can use any A(t;) such that
TE. _
<>\ Fy)t—tf =0

(in particular A(tf) = 0) and therefore

‘jj_f; _ /t ! (30— ATFo) dt + (TFy),_ vop
0

SLI\IDIALb Sensitivity Analysis Implementation CVODES and IDAS Final remarks
O000000@00000 00000 0000000 000

ASA for ODE and DAE systems (2) e

Model: F(y,y,p) =0, Yy(to) = Yo(p)

Output functional: G(p) = ftg g(y,p)dt
Gradient: = [(gp = ATFp) dt — (ATFyyp)[
Adjoint system: (ATFy) = ATFy = —gy, () =7

Consistent final conditions [Cao,Li,Petzold,S., 2003]

Hessenberg index-2 DAE

\d _ _ AT d T
d _d(yd ya p) N A=A —C' A2 — gyd
0 =fa(y9,p) 0=-BTx! g,
Search for final conditions of the form A9 (t) = (CT)=t
(¢ ATB = —gya = £TCB = —gya = &' = —gya(CB) !
— fa(yd,p) =0 — Cyd = —f2 = \ITyd = —yiTf2
= AT () = — (gya(CB)_lC)t:t

t _
= ‘é—g = tof (gp + Adeg + Aang‘) dt + 297 (to)ygp + (gya(CB) 1f§)t=tf

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000000080000 00000 0000000 000

Sensitivity of g(y(tr),t, p) (1) e

. dg — d dG
USG. aa(&) ::aﬂ'aa

.
e d t
Gradient: @ (t) = (gp — A Fo)iey T Jig plFpdt — (u' Fov¥o)io, — — a0
Adjoint system: (uTFy) —pTFy =0, pult) =

Consistent final conditions [Cao,Li,Petzold,S., 2003]

implicit ODE

F(Y,y)=0= (u"Fy) —pu'Fy =0
Att =t
ARy =0=(\TFy) +u'Fy =0
and therefore . .
W) = (Fhey)
Ifyo = Yo(p) =

j_g(tf) = gp(tr) + 1" (to)A(to)yop

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
00000000000 00000 0000000 000

vSenS|t|V|ty of g(y(tr),t,p) (2) o=

. dg — d dG

radient: @i (tr) = (9p — ATFp),_ + Jig ' Fpdt — (u'Fy¥p),_ — =

Adjoint system: (u"Fy) —pTFy =0, pu(t) =

Consistent final conditions [Cao,Li,Petzold,S., 2003]

Hessenberg index-1 DAE

ye =19y, y?) pf = —ATpd — CTp2
O:fa(yd’ya) OZBT,ud-i-DT/,La

A =0f9/0yd, B = 9f9/9y3, C = 0f2/9yd, D = 9f2/9y? nonsingular

uT () = <9yd - gyaD_1C>

=

t=t;
ifyd =yd(p) =

d

%(tf) = gp(ty) + 1T (to)yS,

Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000000000800 00000 0000000 000

Sensitivity of g(y(tr),t, p) (3) o=

. dg _d

Gradient: 99(t.) — A E ¥ 4 TFp dt TF, 40" Fy¥p)
radient: @(f) = (gp - p)t:tf + fto o Fp dt— (M yyp)t:to S dy

Adjoint system: (uTFy) —puTFy =0, u(t) =?

Consistent final conditions [Cao,Li,Petzold,S., 2003]

Hessenberg index-2 DAE

yd =19y, y?) pf = —ATpd —CTp2
0 =fa(y?) 0=8B"u

A =0fd/0yd, B = 9f9/9y3, C = 9f2/9y4, CB nonsingular

=

dt

=t

uT () = (gyd —gya(CB)~? <CA+ d—C)>t_t (1-B(cB)C),

ifyd =yd(p) =
d
d—f’)(tf) — gp(ty) + 1T (to)yS,

Sensitivity Analysis Implementation CVODES and IDAS Final remarks
0000000000 e0 00000 0000000 000

Higher-order sensitivities with FSA (e

m Straightforward extension of 15! order SA.

m Except when dealing with very few parameters, the computational cost is
exorbitant.

ODE y=f(t,y); y()=Yo(P);i y€ER" peR™
Functional a(y(p))

. d?
Hessian d—pg = (le ® gy) Ypp + yJ Gyy Yp
where

. d

Yo =fy¥p: Yp(to) = dL:

. d2y
_ T . _ 0

Yop = fyYpp + <|n ® Yp) fyyYp i Ypp(to) = a2

Note that dim(yp) = nNp and dim(ypp) = n?Np.

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS

Final remarks
000 00000000000 00000

0000000 000

Higher-order sensitivities with ASA e

m Use the same trick as for the “pointwise functional” case: take an additional
formal derivatives of the gradient of either G or g.

m The cost of computing a full Hessian is roughly equivalent to the cost of

computing the gradient with FSA. However, Hessian-vector products can be
cheaply computed with one additional adjoint solve [Ozyurt and Barton, 2005]

ODE y=f(t,y); y(t)=VYo(p); y€ER", peRW

ff
Functional G(p)= [g(t,y)dt
L]
. 82G T T
Hessian-vector product 8_p2u = [(/\ ® |Np> YppU +Yp “} t=ty
where

—a=fu+ (AT @h)fys; plt) =0
—A=fA+0gy; At)=0
S =1fys+fou; s(tp) = yopu

SUNDIALS Sensitivity Analysis Implementation

CVODES and IDAS Final remarks
000 000000000000 @®0000

0000000 000

Generation of the sensitivity equations (5

Forward sensitivity analysis
m Analytical

m Automatic differentation (ADIC, ADOLC)

m Directional derivative approximations

fysi v ORI D) {ai — |fi|y/max(riol, ¢)
~ f(tayvp+o-ieip)_f(tvyvp_aiei) = 1 —
fo ~ %, Y = max(1/a;, I1si Twrwms /TBi)
or
fySi +fpi ~ f(tay + oS, p —}—O’Eip) _f(t7y —0Sj,P — O'ei)

20
where o = min(oj, oy)

Adjoint sensitivity analysis
m Analytical

m Reverse automatic differentiation (ADOLC)
m No finite-difference option (cost ~ COStgga)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000000000000 O@e000 0000000 000

FSA with implicit solvers e

FSA effectively implies solving an extended system of dimension N x Np = efficient
implementation of an implicit integrator must take advantage of the structure of the
sensitivity equations and the fact that they are linearizations of the original DE.

Solutions (for implicit ODE/DAE integrators)

m Staggered Direct [Caracotsios and Stewart, 1985]:

iterate to convergence the nonlinear state system and then solve the linear
sensitivity systems

requires formation and storage of J; errors in J — errorsin s

m Simultaneous Corrector [Maly and Petzold, 1997]:
solve simultaneously a nonlinear system for both states and sensitivity variables
requires formation of sensitivity r.h.s. at every iteration

m Staggered Corrector [Feehery, Tolsma, and Barton, 1997]:

iterate to convergence the nonlinear state system and then use a Newton method
to solve for the sensitivity variables

with iterative linear solvers — effectively Staggered Direct

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000000000000 00000 0000000 000

ASA for nonlinear problems =

For nonlinear problems, the forward states are needed in the backward integration
phase. Moreover, when using an adaptive integrator, the number of integration steps is
not known apriori and the forward and backward DE are evaluated at different times. =-
need predictable and compact storage of state variables for the solution of the adjoint
system and an efficient interpolation scheme.

Solution: checkpointing

Represents a compromise between efficiency and memory requirements:
m Simulations are reproducible from each checkpoint
m Force Jacobian evaluation at checkpoints to avoid storing it

m Store solution (and possibly first derivative) at all intermediate steps between two
consecutive checkpoints

m Interpolation options: cubic Hermite, variable-order polynomial

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000000000000 00080 0000000 000

Checkpointing (s

Implementation

integrate forward step by step

dump checkpoint data after a given number of steps
continue until t;.

evaluate final conditions for adjoint problem

store interpolation data on second forward pass

BaNBANE

propagate adjoint variables backward in time
1 forward + 1 backward < total cost < 2 forward + 1 backward

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000000000000 O000e 0000000 000

Discrete vs. continuous sensitivity (5

Discretization of the adjoint vs. adjoint of the discretization?

m Discrete adjoint of a RK method of order p is an order p discretization of the
adjoint equations [Hager, 2000].

m BDF adjoints with variable step are not consistent with the continuous adjoint
equation [Sandu, 2003].

Time-dependent PDE solved with MOL: additional issues

m DA: discretization of the adjoint PDE

B no general derivation method (hard for systems of PDES).
B some objective functionals may be inadmissible
[Arian and Salas, 1997; Giles and Pierce, 1997].

m AD: adjoint of the semi-discretization to ODE/DAE

B do not require explicit BC for adjoint variables.

B any cost functional is admissible.

B may be inconsistent with the adjoint PDE (e.g. when using nonlinear
discretization schemes).

B may not be consistent with any PDE close to boundaries
[Li and Petzold, 2004].

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000000000000 00000 @®000000 000

Sallent features of the SUNDIALS SA solvers (5

m Solution of nonlinear systems for FSA

m simultaneous corrector
m staggered corrector
m modified staggered corrector (CVODES only)

B Two-pass checkpointing for ASA

m Two different interpolation modules for ASA:

B piece-wise cubic Hermite
m variable-order polynomial

m Support for integration of pure quadrature equations (for the
evaluation of integrals in ASA)

m Support for simultaneous integration of multiple adjoint problems
and of adjoint problems depending on forward sensitivities (for
2nd order ASA)

m Calculation of consistent initial conditions for state, sensitivity,
and adjoint variables (IDAs only)

m Generation of the FSA sensitivity systems through directional
derivatives

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks
000 000000000000 00000 O@00000 000

IVP integration with CVODES o=

Main function

/* Set tolerances, initial tine, etc. */
y = N.VNewSerial (N);

/* Load |I.C intoy */

mem = CVodeCr eat e(CV_.BDF, CV_NEWION) ;

flag = CVodeSet User Dat a(mrem ny_dat a) ;

/* Set other optional inputs */

flag = CVodel nit(mem rhs, t0, y);
flag = CVodeSStol erances(nmem rtol, atol);
flag = CvDense(nmem N);

for(i=1; i<= NOUT; i++) {
flag = CVode(nem tout, y, &, CV_NORVAL);
/* Process solutiony */

}

N_VDest roy(y);

CVodeFr ee(&ren) ;

User-supplied functions

required

int rhs(realtype t, NVector y, NVector f, void *data);
optional

Jacobian information, preconditioner, rootfinding, quadrature, etc.

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

000

000000000000 00000 00e0000 000

FSA with CVODES Ler

Main function (instrumented for FSA)

y = N.VNew.Serial (N);
nmem = CVodeCr eat e(CV-BDF, CV_NEWION) ;

flag = CVodeSet ***(nem...);

flag = CVodelnit(mem rhs, t0, y);

flag = CVodeSSt ol erances(nmem rtol, atol);
flag = CvDense(nmem N);

yS = N.VC oneVectorArray(Ns, N);

flag = CVodeSensl nit(mem Ns, CV_.STAGGERED, srhs, yS);
flag = CVodeSensEEt ol er ances(nmem ;

flag = CVodeSet Sens***(mem . ..);

for(i=1; i<= NOUT; i++) {

flag = CVode(mem tout, y, &, CV.NORMAL);
flag = CVodeGet Sens(mem &t, yS);

}

N_VDest roy(y) ;

N_VDest r oyVect or Array(Ns, yS);
CVodeFr ee(&em ;

User-supplied functions

recommended
int srhs(realtype t, NVector y, NVector f, NVector yS,
N.Vector fS, void *data, N\Vector wkl, NVector wk2);

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

000

000000000000 00000 000@000 000

ASA with CVODES o=

Main function (instrumented for ASA)

y = N.VNewSerial (N);
mem = CVodeCr eat e(CV_.BDF, CV_NEWION) ;

flag = CvodeSet***(nmem mny_data);

flag = CVvodelnit(nmem rhs, t0, y);

flag = CVodeSSt ol erances(nmem rtol, atol);

flag = CvDense(nmem N);

flag = CVodeAdj I nit(nmem nsteps, CV_POLYNOM AL);

for(i=1; i<= NOUT; i++) {
/*flag = CVode(nmem tout, y, &, CV_NORMAL);
flag = CVodeF(nem tout, y, &, CV_NORVAL, &nckeck);

}
yB = N.VNew.Seri al (NB);

flag = CVodeCreat eB(nmem CV_BDF, CV_.NEWTON, &i dxB);
flag = CVodelnitB(nmem idxB, rhsB, tf, yB);

flag = CVodeSet ***B(nmem idxB,...);

flag = CVodeB(nem tO, CV_NORMAL);

flag = CVodeGet B(mem i dxB, &, yB);
N_VDest roy(y) ;

N_VDest roy(yB) ;

CVodeFr ee(&rem ;

User-supplied functions

required

int rhsB(realtype t, NVector y, NVector yB, NVector fB, void *data);
optional

Jacobian information, preconditioner, quadrature, etc.

CVODES and IDAS
[Jele]

FSA example: slider-crank

Dynamics stabilized index-2 DAE (GGL formulation)

G = v-oz(ap
M(q)v = Q(anakaC)_q)g(q))‘
®(q) = 0O position constraints
dq(qv = 0 velocity constraints

I.C. a(0)=ao, Vv(0)=vo

1.6

—_,

| I dy/ax ||
I o5 /dc

P T— i & . W b — - e b _

1.4

Y2

[
2 ., K

0.8
0

CVODES and IDAS

(o] o]

ASA example: brusselator

Dynamics Two-species 2D time-dependent PDE
Uu = eAu+u?v—(B+1u+A o)
{Vt = ¢eAv —u?v +Bu in & =[0,L]
B.C. (0u/on)|gq = (0v/On)|sga =0
I.C. u(x,y,to) = up(x,y) = 1.0 — 0.5cos(wy /L)
vV(X,Y,to) = vo(x,y) = 3.5 — 2.5cos(mx/L)
Output g(t) = (1/1]) Jou(x,y, t)dQ
Adjoint PDE
A = —eAu—(2uv —B —1)A+ (2uv —B)u
w = —eAv — U2\ —u?py

B.C. (9A/n)|aq = (9u/ON)|og = O
I.C. A(X,y,t) =1.0
pw(x,y,t) =0.0
Sensitivity dUg , Vo = 69(t;)
a(tr) = (1/192]) [M0, x,y)duo(x,y) + p(0, X,y)dvo(x,y)] dQ

CVODES and IDAS
ooe

ASA example: brusselator

Initial conditions u(tp, X,y) = uO(x,y) Final solution u(t;, x,y)

Weak parallel scaling
(jacquard.nersc.gov)

—o— Simulation
—— ASA

[

124 8 16

CPU time (s)
= nN N
o (=] u

[
o

|

o

32
Number of processes

Final remarks
@00

Coming attractions in SUNDIALS

SUNDIALS
m IDAS- DAE solver with SA capabilities

m CPODES- Coordinate projection solver for ODE with invariants

m New linear solver modules

m Direct dense and band Blas+Lapack linear solvers
m Support for sparse direct linear solvers

FSA
m Support for FSA of pure quadrature variables
ASA

m Support for simultaneous integration of multiple backward
problems

m Support for simultaneous FSA-ASA (for 2nd order SA using
forward over adjoint)

m - available in next SUNDIALS release (end '07)

Final remarks
000

www.lInl.gov/casc/sundials e

“ The SUNDIALS suite
m Open source, BSD license

RiTD =g | m Extended documentation

m User support

i

Final remarks
ooe

Sensitivity Analysis is... e

m useful
in several different areas (e.g. dynamically-constrained

optimmization, UQ).

m enabling
for various types of analysis (ROM evaluation, global error
analysis, solution of certain classes of problems).

m only a few function calls away
and general-purpose SA solvers are available.

m worthy
and the effort required to add sensitivity capabilities to a
simulation tool is well invested.

UCRL-PRES-213978

This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48.

	SUNDIALS: overview
	Description

	Sensitivity Analysis
	Overview: what? why? how?
	Forward sensitivity analysis
	Adjoint sensitivity analysis
	Higher-order sensitivities

	Implementation considerations
	Efficiency issues
	(Non-)commutativity issues

	CVODES and IDAS
	Features
	Usage
	Examples

	Final remarks
	Final remarks

